
Discrete Mathematics 27 (1979) 47-57.
@ North-Holland PuWhing Company

BOUNDS FOR SORTING BY PREFIX REVER!&'U,

William H. GATES
Microso~ AIbquenIue, New Mexico

Christos H. PAPADIMITRIOU”~
Deparhunt of Ekticd Ewheering, Uniuersity of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August I978

For a permutation u of the integers from 1 to n, let f(o) be the smallest number of Tretix
reversais that will transform u to the identity permutation, and let f(n) be the largest such f(o)
for all u in (the symmetric group) S,,. We show that f(n) d (Sn + 5)/3, and that f(n) 2 17n/16 fx
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n.‘2 - 1 s g(n) zz 2n + 3.

1. Introduction

We introduce our paoSlem by the following quotation from [I]

The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I deliver them to a customer, on the way to the
table I rearrange them (so that the smallest winds up on top, and so on, down to the
largest at the bottom) by grabbing several from the top and flipping them over, repeating
this (varying the number I flip) as many times as necessary. If there are n pancakes, what
is the maximum number of flips (as a function f(n) of n) that I will ever Lave to use to
rearrange them?

In this paper we derive upper ana !ower bounds for f(n). Certain bounds were
already known. For example, consider any stack of pancakes. An adjacency in
this stack is a pair of pancakes that are adjacent in the stack, and such that no
other pancake Las size intermediate between the two. If the largest pancake is on
the bottom, this also counts as one extra adjacency. Now, for n 2 4 there are
stacks of n pancakes that have no adjacencies whatsoever. On the other hand, a
sorted stack must have all n adjacencies and each move (flip) can create at most
one adjacency. Consequently, for n 2 4, f(n) 2 n. By elaborating on this argu-
ment, M.R. Garey, D.S. Johnson and S. Lin [2] showed that f(n) 3 n + 1 for n 3 6.

For. upper bounds-algorithms, that is -it was known that f(n) s 2~. This can
be seen as follows. Given any stack we may start by bringing the largest pancake
on top and then flip the whole stack: the largest pancake is now at the bottom,

* Research supported by NSF Grant MCS 77-01193.
t Current address: Laboratory for Computer Science, Massachusets, Institute of Technology,

Cambridge, Ma 02139, USA.

47

48 W.H. Gates, C.H. Papadimitiow

after two moves. Inductively, bring to the top the largest pancake that has not
been sorted yet, and then flip it to the bottom of the unsorted stack. By 2n moves
we wi?!l have thus sorted the whole thing. In fact, 2n can be improved to 2n -c,
constant c, by sorting the last few pancakes by a more clever method.

The list of obvious upper and lower bounds ends here. We show in Table 1 the
known values of f. The seven first values were known to M.R. Garey, D.S.
Johnson, and S. Lin in [2]. The last two are taken from [3].

Table 1

12345678/9
; 0 13457~9110 -tkt-t-

In Section 2, after introducing some notation and terminology, we prove that
f(n) s (5~ + 5)/3 by designing a sorting algorithm that always has at least as good
performance. In Section 3 we show that f(n)2 17n/16 infinitely often, by con-
structing, for elch k 2 1, a stack of 16k pancakes that requires 17k moves in
order to be sorted. Finally, in Section 4 we derive bounds for f(n) under the
additional restriction that the pancakes must come out not only sorted, but also
“right-side-up”. In other words, each pancake must suffer an even number of
Gppings. The motivation is, of course, that the two sides of a pancake may not be
the same, and the pancakes are required to come out of the sorting procedure
“right side up”. If g(n) denotes the corresponding function for this modified

We will vepresent permutations in S, as strings in 2: where X,, =(I,2,. . . , n}.

We will define a binary relation 3 in S,, by writing T+--,o whenever 7r =xy,
(I = x”y, where x,y EX~ and xR is the string x reversed (read backwards). If v is a
: ;\erniu taCoI f(:r) is the smallest k such that there exists a sequence of pemuta-

L -c ?b‘ = P,) ;‘I, --, ’ l l +v = e,,. where e,, = 123 9 9 l

&n. j(n) is thit 13rgest f&over all ?T E S,,.
II is the identity permuta-

problem, we can show that (3n/2) - 1 c g(n) G 2n + 3.

2. An algorithm

Let v by a permntation in S,,. v(i) is the jth number in n, where 1 si s n. If
In(j) - 7r(i + l,i = 1, we say that the pair (j, i + 1) is an Gdjacency in rr. If 7r = xby,
where x, 5, y E XT such ihat (i, i + 1) is an adjacency for i = 1x1+ 1,. . . ,1x1+ It+- 1,
and b is maximal with r\:spect to this property (i.e., (Ix\, 1x1+ 1) and (1x1+ lbl, Ixl+
lb1 + 1) tire not adjacencies), then b is called a block. If n(i) is cot in a block, i.e.,
(j - 1, i) and (i, i + 1) are not adjacencies in V, then ,rrcj) is free. For the purposes
of this section we will consider (i, i f 1) ro be an adjacency also if {mu), ?r(i + 1)) =

(1, n1.
Our algorithm will sort the permutation 7r so as to create a total of n - 1

adjacencies. that is, a block b of size n such as the ones shown in Figs. l(a), l(b).
These permutations can then be transformed to e,, via iit most four flippings (Figs.

Bounds for sorting by prefix reversal 49

l(c), l(d), respectively). In the description of the algorithm below we use o to
stand for one of (1, - 1). Addition is understood modulo n.

k-l...1 In...kl

I b-d

k

I
n...k l...k-1

1
k-l . ..I 1 k...n

1
1 . ..k_llk..q

(cl

Ik

1 W
n...k 1 l...k_l

1
k-l...1 1 &...nl

I
1 . ..k-1 1 k...n[

(d)

Fig. 1.

Algorithm &

input: a permutation *IT E S”.
outputz a permutation a with n - 1 adjacencies.

Set O=V.
Repeat the following.
Let t be the first element of o; i.e., o = to’. (At least) one of the following
eight cases applies. In each case take the corresponding action.

1. t is free, and t +o is also free. Perform the flipping shown in Fig. 2(a).
2. t is fret:, pnd t +o is the first elemeiP of a block. Perform the flipping shown in

Fig. 2(b).
3. t is free, but bath t + 1 and t - 1 are the last elements of blocks. Perform the

sequence of flippings shown in Fig. 2(c).
4. t is in a block, and t + o is free. Perform the flipping shown in Fig. 2(d).
5. t is in a block, and t + o is the first element of a block. Perform the flipping

shown in Fig. 2(e).
6. t is in a block with last element t + k l o (k > 0), t -0 is the last element of

another block and t + (k + 1) l o is free. Perform the sequence of flippings
shown in Fig. 2(f) or 2(g) (depending on the relative position of the two blocks
and t-t(k+l)*o.

7. t is in a block with last element t + k l o (k > 0), t -0 is the iast element of
another block and t + (C + 1) l o is in a block. Perform the sequence of flippings
in Fig. 2(h) or 2(k) (depending on whether t + (k -I- 1) l 0 is at the beginning or

the end of its block).
8. None of the above. u has rt - 1 adjacencies; halt.

50 W.H. Gates, C.H. Papadimitiou

t . ..t-0

r1

I
t . ..t-0

1
I I **-t+o t . ..t-_o

t*-‘t+ko t+(k+l)o o--t 0

1
f +(k + 1)o t+ko...t . ..t-o

1
1 I . ..t-0

1

L II t-q... t. I
1

II- ---t-o t*-.t+ko t+(k+l)o
1

1

#+(k+l)o... _-- I

1 - _-
I;T-ko- . +7--- ‘:+(k+l)w 9 l - .-- I

1
r-jt+lioj: ‘-(k+l)o...(

_P

‘h1
1

t t+o-” I
I

I I
W

t . . . t+o I
1

I I I
(4

t 9.. t+ko . ..t_o r+(k+l)o 1

1

t+(k+l)o t-o... t+ko.n l t I

I

t**gt+ko l .a t+(k+l)o I

1
t+(k+l)o~~. t+konn.r I

Fig. 2.

Theown 1. Algorithm d creates a pemzutation witlt n - 1 adjacencies by at most
(5 n - 7)/3 moues.

Proof. First, it is clear that if we have a permutation o with less than n - 1
adjacencies, one of the cases 1 through 7 is applicable. Hence, the algorithm does
not halt u;,;ess n - 1 adjacencies have been created. Obviously the algorithm will
eventually &lalt, since at each execution of the mttin loop at least one new

z =x,+xp+4x3+x4+2x5+x,

where xi is multiplied by the number of tlippings involved in the action of type i
(see first row of Table 2). Action 3 can be divided into four special cases,
according to what happens in the flipping of Fig. 2(c) (or 2(f), or 2(g)) that comes
before the last. The top of the stack before the flipping and the element next to
t-0 may either

1. be non-adjacent,
2. form a new block,
3. merge a block with a singleton,
4. merge two blocks.

Bounds for sorting by preftc mersal 51

adjacency lc created and none are destroyed. It remains, however, to prove that it
does so in no more than (5 n - 7)/3 moves.

Call the action of case 1 uction 1, the action in case 2 action 2, the action of
cases 3 and 6 action 3, the action of case 4 action 4, and the action of cases 5 and
7 u&on 5, and ation 7, respectively. Let 4 denote the number of actions of type
i performed by an execution of the algorithm. The total number of moves (i.e.,
flippings) is given by

Accordingly, we distinguish among these subcases by writing x3=

x31 + x32 + x33 + x34. Now, since each action increases the number of adjacencies as
indicated in Table 2, the total number of adjacencies in the conclusion of the
algorithm is

n- 1 =U+X,+x,+2X31+3X32+3X33+3X34+Xq+Xg+X,. (1)

Finally, if 6 is the number of blocks in w we have

5+x,-xgl-x33-2x34-xg-x,= 1, (2)

because each type of action increases or decreases the number of blocks as
indicated in Table 2, we start with b >13cks and we end up with 1 block. Also,
notice that b s a, whereby (1) becomes

Xt+Xz+2X31+3X32+3233+3334+X4+;Cc,+x,+b~n-2. (3)

Table 2

Action 1 2 31 32 33 34 4 5 7

Number of
flips 114444121

Increase in
adjacencies 112333111

Increase in
number of
blocks 1 0 -1 0 -1 -2 0 -1 -1

52 W.H. Gures, CM Papadimitiou

Thus any possible application of the algorithm would, at worst, maximize

z =x,+x2+4x3+x4+2xs+x,

subject to (2) and (3) above. We claim that the maximum is achieved for the

values

.__X I = (n + 1)/3, x2 = 0, x3 = x3* = (n -2)/3

x4=x5=x, =b=O,

yielding a value of z equal to (5n - 7)/3. To show our claim, recall the duality
Theorem of Von Neuman, Kuhn and Tucker, Gale, and Dantzig [4] stating
essentially that this maximum value equals the minimum value of the dual iinear
program :

minimize 0 =52+b-1x3,

subject to the inequalities

Thus, in order to prove our claim, we just have to exhibit a pair (e2, e3) satisfying
these inequalities and having o = & + (n - 1)e3 = (5n - 7)/3. And such a pair is
&== -213, &=513 .

3 he bound f(~ k $ s (5 n + 5)/3 now follows directly, since it takes four more
: IOVCS to tt I nsf.)rm a permutation with n - 1 adjacencies to e. In any event, the
4’0 *eta It +yr- of the bound can be improved quite easily by stopping the
algorithm wht,q II - 4, for some k, adjacencies have been formed, and then
~~ptimally putting together the k + 1 pieces.

3. A hwer borrd

Let 7 = 17536423. For k a positive integer, TV denotes T with each of the
integers increased by 8 l (k - 1). In other words, Tk is the sequence
Pk7&3k6k4k2k8k, where mk =

R
7172 737:. l l

m + (k - 1) l 8. Consider the permutation x =
T,,_&, where m is an even integer, and n = 1x1= 8 l m.

53 Bounds for sorting by prefix reoersal

Theorem 2. 19n/16>f(+ 17~1116.

Proof. To show the upper bound, we Grst do the following sequences of moves

x + &73 l l l + ?$;TB l l .+?1?2T3’ ’ w

and so on, bringing the even-indexed r’s in front and then back with the reversal
cancelled in three moves. Thus, in 3n/l6 moves we obtain x’ = ~1~2~3 l l l 7,. Then,
for each copy of T in x’ we repeat the following sequence of eight moves (among a
number of possibilities)

x’= ~17536428~ -+ 571~~36428~ -+ 63x175428~

+ 1~~3675428~ + 45763x 128~ + 67543x 128~

---, 76543x 128~ + 2 1~~345678~ + x 12345678~.

Thus in a total of 19n/16 moves we can produce e starting from x, and the upper
bound is established.

For the lower bound, let x = ~o+~I+~2+ l . . +xfdX)=- e, be an optimal
sequence of moves for x; each of xi, i = 1, . . . , f(x) is called a moue. Let us call a
move k-stable if it contains a substr;ng of the form lk 7ka2k gk (or its reverse),
where a is a permutation of (3k,4kr5k,6k). We say that xi is an event if xi-1 is
k-stable, for some k, but xi, x~+~, . . . , xffX, are not.

Claim 1. There are exactly m events.

To prove Claim 1, we notice that x0 is k-stable for k = 1, . . . , m, and xftX) is not
4 -stable for any k. Furthermore, no permutation can cease being k ,-stable and
k,-stable, k, # k2, in only one move.

Let us call xi a waste if xi has no more adjacencies than xi-1. (Here, by an
adjacency in 0 we mean any pair (i, i + 1) such that either i c n and (a(i) -

o(i+ 1)1= 1, or i = n and a(i) = n.) Let w denote the total number of wastes
among {Xj: i = 1, . . . , f(X)}.

Claim 2. f(x) 2 n + w.

To see why this is true, one just has to
adjacencies, and any move that is not a

By our Claim 1 we conclude that

considering there are m events as shown

notice that x has no adjacencies, e
waste creates just one adjacency.

has n

in the optimal sequence that we are

below (5 is the transitive closure of -+)

54 W. H. Gates, C. H. Papadimitriou

Claim 3. For all i, 1 <i G m - 1, there exists a waste xl with ii s I s ii+,.

To prove Claim 3, suppose that it fails. In other words, suppose that there is an
event ii other than the last one, such that all moves xl, ij S f s ij+l construct a new
adjacency without destroying an existing adjacency. Suppose that k is the
appropriate index for which xi,_1 is the last k-stable permutation in the sequence
considered. Then, xi,_ 1 = x lk7kc2k8ky, where x and y are strings of integers and
u is a permutation of (3k, 4k, &, dk}. Notice that since our basic string 7 =
17536428 is symmetric (in that i + j = 9 if and only if I(i) + 7(j) = 9) this is not a
loss of generality. For simplicity in our notation, we shall omit the subscript k in
the rest of this part of our argument; we shall also assume that a = 5364, since the
argument is identical for any a. Thus

xi,_ 1~ x 17S36428y.

We distinguish among two cases.
Case 1. x = E, the empty string. Since xi, is neither a waste nor k-stable, we

must have

Now, we *must not, according to our hypothesis, have a waste until after the next
event. This, however, is impossible, since the first move after xi, which flips more
than four elements is a waste.

Case 2. xf E. That is xi,_ I = x 17536428~. Since xi, is neither a waste nor
k-stable, it must be the case that x = 92, and xi, = 2463571 zR98y. Again, we must
not have a waste until after the next event. This means that the only moves
permitted are local rearrangements of the integers { 1,3,4,5,6,7}; thus

Again, the IIGX~ move has to be a waste.

The theoreni now follows directly from Claims 1, 2, and 3.

f(x)=%-twrn+m
17n =-

2 16’

4. Bounds for a restricted version

Let us define a binary relation 3 on S,, x 2”*.-.*“” as follows: (0, S)_4 (a’, S’) if
and on11 if u = ncy, o’ = ~‘y, and S’= S@X, wh%sre X is the set of integers

Bounds for sorting by prefix reversal 55

involved in X, and $ stands for symmetric difference. Let g(a) be the shortest
chain in + from (a, $9) to (e,,, fl), and let g(n) be the largest g(o) over all v E S,,.

Theorem 3. g(n)s2n+3.

proof, First observe that g(u) is not greater than f(a’) where O’E Szn is defined as
follows, for each o E S,, : a’(2i - 1) = 2a(i) - 1 and o’(2i) = 20(i) for all i =
1 9”.9 n. The complexity of sorting a’ without the restriction can now be bounded
from above by the algorithm & of Section 2. The equations governing the
complexity of SQ when applied to (I’ are (l), (2), and (3) of Section 2 with n
replaced by 2n, 6 = a = n, and also noting that only x5 can be nonzero, since all
other actions are possible only in the presence of free elements. The maximum is
therefore 2n - 2. Allowing five more moves to sort the resulting permutation, we
get the claimed bound.

We shall now derive a lower bound for g(n). The ‘“hard” permutation in this
case is eF=n,n-1 , . . . ,2,1, a permutation which is next to trivial with our
restriction removed. Consider an optimal sequence for et

A pair (i, i + l), i < n, is an adiucency in (x, S) if either x(i + 1) = x(i) + 1 and x(i),
x(i+l)g!S 0 r x(i+l)=x(i)-1 and x(i), x(i+l)ES. A pair (i, i+l) is an
anti-adjacency in (x, S) if either x(i + 1) = x(i) - 1 and x(i), x(i + 1) p! S or
x(i + 1) =x(i)+ 1 and x(i), x(i+ 1)~ S. A move Aj is a waste if there are no more
adjacencies in Aj than there are in AI- 1. A set {x(i), x(i + l), . . . , x(i)), j > i, such
that (k, k + l), i s k <j, is an anti-adjacency in (x, S) is called a clan. Notice that
e: is all non-adjacencies; in other worab, it has one big clan, namely { 1, . . . , n}.

At each move we may “break” at most one clan C replacing it by two new clans
Cl, C2 with C, U C2 = C. Thus, the process of sorting ef can be thought of partly
as “breaking up clans”, since e,, has no clans. Interestingly enough, it is this aspect
of sorting ez whose complexity can be captured quite easily.

A move Aj is called an (a, &cut if a clan C in A,_ 1 is replaced by two clans
C1, C2 in A, such that C = C, U Cr and &I= Q, IC21 = 6.

Lemma 1. Let A, be an (a, 6) cut.
(1)Zt u, 6 > 1, then both A,, A,, 1 are wastes,
(2) If the only one of u, 6 > 1, then either Ai or A,+1 is u waste.

Proof. An easy case-by-case analysis.

Theorem 4. g(e!+Sn - 1.

56 W. H. Gates, C. If. Papadimitriou

Proof. et has no adjacencies; SO g(eF) 3 it + w, where w is the number of wastes
in the sequence considered. In order to bound w from below, let xl be the
number of cuts in (1) above, x2 (and x3) are the numbers of moves of case (2) of
Lemma 1 which are (resp. are not) wastes, and x4(x& the number of (1, 1).cuts
that are (resp. are not) wastes. Finally, let y be the total number of moves that
result each in the creation of a clan C from either another clan C’ IC’l = ICI - 1
and a singleton, or from two singletons. It is easy to see that such a move is a
waste, and cannot be a cut. Obviously we have

w 3x1 +x,+x,+y, (4)

and

because at least y +)t - 1 cuts must be eventually produced.
We next observe that

n+2y- l~x*+xJ+2xj+2xs, (6)

beca!tse wz: start with no singletons (elements not in a clan), we end up with n;
each n:z>~e counted by y (a y&move for short) absorbs at most two ~ingletan~, each
x2-move or x,-move creates 8 sin&ton, and each x4 or x5amove createa two
singletons, Finslily, we claim that

Baunds for sorting by prefix reuersal 57

5. Dillado0

We presented an algorithm sorting any permutation of length n in about G/3
prefix reversals; improving the multiplicative constant seems to be quite challeng-
ing. We also described a technique for deriving lower bounds for f<n>, and
showed how it can be used to establish that f(n) 2 17n/l6. Improving on this
particular lower bound doss not appear too hard; in fact, we conjecture that for
our “hard” permutation x, f(x) = 19n/l6. Also, slightly better lower bounds may
be conceivably proved by using different 7%--0f length 7, say. However, we do
not know how the upper and lower bounds can be narrowed significantly.
Naturally, it is not clear at all that f(n)/n converges, and hence it may be that no
better bounds are attainable.

WC; wish to thank Mike Garey and Harry Lewis for suggesting this problem to
us. We acknowledge the comments and corrections of Jacob E, Goodman (the
“Harry Dweighter” of [11) and of an anonymous referee,

