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Abstract 

The “pancake problem” is a well-known open combinatorial problem that recently has been 
shown to have applications to parallel processing. Given a stack of n pancakes in arbitrary 
order, all of different sizes, the goal is to sort them into the size-ordered configuration having 
the largest pancake on the bottom and the smallest on top. The allowed sorting operation is 
a “spatula flip”, in which a spatula is inserted beneath any pancake, and all pancakes above the 
spatula are lifted and replaced in reverse order. The problem is to boundf(n), the minimum 
number of flips required in the worst case to sort a stack of n pancakes. Equivalently, we seek 
bounds on the number of prefix reversals necessary to sort a list of n elements. Bounds of 17n/16 
and (5n + 5)/3 were shown by Gates and Papadimitriou in 1979. In this paper, we consider 
a traditional variation of the problem in which the pancakes are two sided (one side is “burnt”), 
and must be sorted to the size-ordered configuration in which every pancake has its burnt side 
down. Let g(n) be the number of flips required to sort n “burnt pancakes”. We find that 
3n/2 < g(n) < 2n - 2, where the upper bound holds for n > 10. We consider the conjecture that 
the most difficult case for sorting n burnt pancakes is -I,, the configuration having the 
pancakes in proper size order, but in which each individual pancake is upside down. We present 
an algorithm for sorting -I, in 23n/14 f c flips, where c is a small constant, thereby 
establishing a bound of g(n) < 23n/14 + c under the conjecture. Furthermore, the longstanding 
upper bound off(n) is also improved to 23n/14 + c under the conjecture. 

1. Introduction 

The “pancake problem” was posed as follows in [2]: 

The chef in our place is sloppy, and when he prepares a stack of pancakes they 

come out all different sizes. Therefore, when I deliver them to a customer, on the 

way to the table I rearrange them (so that the smallest winds up on top, and so 
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on, down to the largest at the bottom) by grabbing several from the top and 
flipping them over, repeating this (varying the number I flip) as many times as 
necessary. If there are n pancakes, what is the maximum number of flips (as 
a functionf(n) of n) that I will ever have to use to rearrange them? 

In [3], Gates and Papadimitriou derive bounds of 17n/16 <f(n) ,< (5n + 5)/3, 
where the lower bound holds for n a multiple of 16. 

Herein we consider a traditional variation on the “pancake problem”, known as the 
“burnt pancake problem”, in which the pancakes are two-sided (one side is burnt). 
Initially, the pancakes are arbitrarily ordered and each pancake may have either side 
up. After sorting, the pancakes must not only be in size order, but must have their 
burnt sides face down. Let g(n) be the number of flips required to sort n burnt 
pancakes in the worst case. Clearly, g(n) a:f( n since any algorithm for sorting burnt ), 
pancakes works for unburnt pancakes as well if we simply ignore sidedness. 

A further specialization of the burnt pancake problem in which all of the pancakes 
begin, as well as end, with the burnt side down is considered in [3]. For that case, they 
find bounds of 3n/2 - 1 and 2n + 3. 

In this paper we obtain bounds of 3n/2 < g(n) d 2n - 2, where the upper bound 
holds for n > 10. We then consider a conjecture that the worst case for sorting n burnt 
pancakes is -I,, the configuration having all pancakes in proper size order, but in 
which each individual pancake is upside down. We present an algorithm for sorting 
-I, in 23n/14 + c flips, where c is a small constant. This gives us an upper bound, 

under the conjecture, of g(n) < 23n/14 + c. Since g(n) af(n), the longstanding upper 
bound on f(n) is also improved to 23n/14 + c under the conjecture. 

Interestingly, the pancake problem may have practical applications in parallel 
processing. The pancake graph (on burnt or unburnt pancakes) described in Section 4 
looks promising as a network for parallel algorithms; in particular, it has sublogarith- 
mic diameter and degree as a function of the number of processors (vertices) in the 
network [l]. In these respects it is better than, for example, the hypercube, which has 
logarithmic diameter and degree. Routing between processors on the pancake graph 
is equivalent to sorting stacks of pancakes, and so is not too difficult. Pancake 
network algorithms are known for broadcast, parallel prefix, and binary tree simula- 
tion [l], as well as sorting [6], and hypercube simulation [S]. 

2. Notation 

We represent a stack of n burnt pancakes as an n-dimensional vector containing the 
integers 1 through n in some order. 1 represents the smallest pancake, n the largest. 
A minus sign preceding a number indicates that the pancake is upside-down. The 
topmost number represents the pancake currently atop the stack. The symbol i rep- 
resents one or more pancakes. The symbol t between two vector; indicates that the 
first can be transformed into the second with one flip. Similarly, k-indicates that the 
first can be transformed into the second with m flips. 
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In general, we denote an arbitrary stack of pancakes by a capital letter such as A or 
B. The stack obtained from A by leaving its pancakes in the same order but flipping 
each pancake in place is denoted by -A. We use I or I,, to denote the sorted 
configuration having 1 on top and II on bottom. 

3. A 2n upper bound 

We first note that there is a trivial upper bound of 3n: flip the largest pancake to the 
top, flip this pancake again if necessary, then flip the entire stack, bringing the largest 
pancake (in a rightside up position) to the bottom. Repeat this procedure recursively 
on the n - 1 remaining pancakes. This sorts the stack in at most 3n flips. (Note that 
the smallest pancake will in fact require at most 1 flip; hence this algorithm actually 
gives an upper bound of 3n - 2.) We now present an algorithm which requires only 2n 
flips in the worst case. 

When a flip brings together two consecutive pancakes p and p + 1 in the correct 
order (that is, with the burnt side of p touching the unburnt side of p + l), we say that 
p and p + 1 have been joined. Note that in the figure below, (a) and (b) represent stacks 
in which p and p + 1 are joined, whereas (c) and (d) represent stacks in which p and 
p + 1 are not joined. 

P -(p+ 1) . ip P+l 

P+l -P P -(P + 1) 

(4 04 (4 (4 

Once p and p + 1 are joined, we may choose never again to separate them. In this 
case the join is equivalent to reducing number of pancakes in the stack by one. 
(Placing the largest pancake n rightside up at the bottom of the stack is also 
considered a join, since thereafter we need never again move it.) After n joins, the stack 
has been sorted. 

This view of the problem leads to a sorting algorithm requiring 2n flips in the worst 
case. For nearly every configuration of pancakes, the algorithm proceeds by produ- 
cing one join in at most two flips. In the analysis one special configuration arises from 
which no join is possible within two flips; however, a second algorithm requiring 
exactly 2n flips is presented for this special case. We conclude that any stack of burnt 
pancakes can be sorted in at most 2n flips. 

Burnt pancake sorting algorithm. Given any stack of burnt pancakes, find the case 
below which describes that stack and perform the prescribed flips, reducing the 
number of pancakes by one. Repeat until no pancakes remain (the stack is sorted). 
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Case 1: At least one pancake is rightside up in the stack. Let p be the largest such 
pancake. Note that p + 1 must therefore be upside down, unless p = n. 

(a) -(p + 1) is lower than p in the stack: 

0-d -(p + 1) is higher than p in the stack: 

-(P + 1) 
-P 

I 
i J 

. 

-(P + 1) 

P 

-P 

kp+l k 

P 

p+l 

(c) p is the largest pancake in the stack; i.e., p = n. 

We see that if any pancake is rightside up in the stack, then we can achieve a join 
within two flips using (a), (b), or (c). 

Case 2: All pancakes are upside down. 
(a) For some p, -(p + 1) is higher than -p in the stack. 

P+l 

-(p+ 1) i ; 

I- ; k -(P + 1) 

-P -P -P 

(b) For all p, -(p + 1) is below -p. The pancakes must be in exactly the configura- 
tion -I,, and it is not hard to see that no join is possible within two flips. Before 
dealing with this case, we summarize Cases 1 and 2(a) in the following theorem. 

Theorem 1. If a stack of n burnt pancakes is not in the configuration -I,, then a join 

can be achieved within two pips. 
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We now present an extremely simple algorithm for sorting -I, in 2n flips: 

Algorithm (*). 
(1) Flip all n pancakes. 
(2) Flip the top n - 1 pancakes. 
(3) Repeat (1) and (2) n times. 

The proof that the algorithm sorts the stack -I, in 2n flips uses the following claim. 

Claim. After running algorithm (*) for 2iJips, i < n, on the stack -I,, the stack will he 

in the following configuration: 

-(i + 1) 

-(i + 2) 

-(n’- 1) 

-n 

1 

2 

i-l 

i 

Proof (by induction). For i = 0, the claim is trivially true. Now assume the claim is true 
for i. Executing the next two flips called for by the algorithm, 

-(i + 1) 

-(i + 2) 

-(n’- 1) 

-n 

1 

2 

i-l 

i 

-2 

-1 

n 

n-l 

i+2 

i+l 

t- 

-(i + 2)’ 

-(i + 3) 

-(n’- 1) 

-n 

1 

2 

i 

i+l 

Thus the claim holds for i + 1 and so for all 0 < i < n. 
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The correctness of algorithm (*) follows immediately by noting that for i = n, the 
claim states that the stack will be sorted . 0 

Taken together, Cases 1, 2(a), and algorithm (*) give an algorithm for sorting any 
stack of n burnt pancakes. Cases 1 and 2(a) are applied i times until the stack is sorted 
or until the configuration - Z,_i arises. Then algorithm (*) is used. Since each of 
Cases l(a)-(c) and 2(a) requires 2 flips, the total number of flips used will be 
2i + 2(n - i) = 2n. Thus we obtain: 

Theorem 2. g(n) G 2n. 

In Section 5, we improve this to g(n) Q 2n - 2 for n > 10. 

4. The pancake group 

It is very useful to view the pancake problem in a group-theoretic setting. Here we 
focus primarily on the burnt pancakes, but the unburnt pancakes can be treated 
analogously. 

The group B, of burnt pancakes consists of all “signed permutations” on n elements. 
An element of B, may reverse or leave unchanged the sign of each coordinate of an 
n-dimensional vector, then permute these coordinates in an arbitrary fashion. B, is 
generated by the elements { bl, . . . , b,}, where generator bi corresponds to a flip of the 
top i burnt pancakes. Note that bi = b; I. Similarly, the group S, of unburnt pancakes 
(i.e., the symmetric group of permutations on n elements) is generated by {uz, . .., u,,}, 

where ni corresponds to a flip of the top i unburnt pancakes. Again, ui = Ui- ‘. Note 
that u1 is the identity, whereas biblbi serves to flip the ith pancake in place. 

Consider the Cayley graph of the group B, with generators bj, which we refer to as 
the pancake graph. Each vertex of the graph can be identified with a unique stack of 
n burnt pancakes, and two vertices are connected by an edge whenever a single flip 
transforms one into the other. A path through the graph from A to B corresponds to 
a sequence of flips transforming stack A into stack B. The graph has 2”n! vertices and 
is regular of degree n. 

If we place a marker on some vertex A of the pancake graph, then an element g of 
the group moves the marker from A to some other vertex B. We write g(A) = B, and 
we say g sorts A if g(A) = I,. The identity element 1, satisfies l,(A) = A. We also 
define the group element - 1, to be the element satisfying - l,(A) = ---A. Note that 
-1: = l,, or -1, = -1;‘. 

Each group element is really just a signed permutation, and as such does not specify 
what path through the graph (sequence of flips) is taken in moving from A to B. We 
can obtain one such path by expressing g as a product of generators; however, there 
are an infinite number of possible expressions for any g E B, (including the generators 
themselves). The burnt pancake problem can be viewed as the problem of bounding 
the number of generators required to express any element of the group B,. The set of 
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elements of B, requiring the longest product of generators in their minimum expres- 
sions are referred to as the “longest” or worst-case elements of B,. 

The distance d(A,B) between two pancake stacks A and B is the number of 
generators in the shortest expression of the element g for which g(A) = B. Equiva- 
lently, d(A, B) is the number of edges in the shortest path from A to B in the pancake 
graph. Note that since the pancake graph is undirected, d(A, B) = d(B, A). 

An important property of both the burnt and unburnt pancake graphs is that they are 
vertex symmetric. That is, given any two vertices A and B, there is an automorphism of the 
graph mapping A to B (in fact, vertex symmetry is a property of all Cayley graphs Cl]). 
The automorphism in this case is given by h(A) H h(B) for all h E B,. Intuitively, the 
graph “looks the same” when viewed from any vertex. This leads to the following theorem. 

Theorem 3. Let W be the set of longest elements in a (burnt or unburnt) pancake group. 
Then for each w E W, it is also the case that w- ’ E W, i.e., W is closed under inverses. 

Proof. Let A be some stack at the maximum distance k from I. Let w be the group 
element that sorts A; w(A) = I. Thus the length of w is k. But then w-‘(I) = A, and 
since distance is symmetric, the length of w -l is also k. By the vertex symmetry 

property, we have that for all vertices B, both w(B) and w-‘(B) are at maximum 
distance k from B. Cl 

Corollary 3.1. If the longest element w of a (burnt or unburnt) pancake group is unique, 
then it is an involution. 

As an example, consider the six worst cases (located by computer search) for n = 11 
unburnt pancakes, shown in Fig. 1. Note that (a)-(d) are involutions, while (e) and (f) 
are a pair of inverses. 
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10 

3 
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Fig. 1 Worst cases for 11 unburnt pancakes. 



112 D.S. Cohen, M. Blum / Discrete Applied Mathematics 61 (1995) 105-120 

Recall that a permutation 7t can be assigned a sign of + 1 or - 1 corresponding to 
whether its expression as a product of transpositions (which swap the positions of two 
items while leaving the rest unchanged) is of even or odd length, respectively. 
Similarly, the sign of a “signed permutation” g is the sign of the corresponding 

unsigned permutation (i.e., that obtained by ignoring minus signs), times - 1 for each 
minus sign in 6. 

Let S!! 1 be the set of generators of the unburnt pancake group with sign - 1 and let 
SB 1 be the set of generators of the burnt pancake group with sign - 1. It is not hard to 

show that 

SF, = {61,b2,bs,b6,...,b4k+~,b4k+2,...}, 

ST!,={ u2~u3,~6,u7, **-,U4k+2,U4k+3, *.* 1. 

Now for any stack A of pancakes, we can take the sign of the permutation which sorts 
it to obtain the parity of the number of generators from Sr! 1 or S?! i in any sorting 
sequence for A. 

5. Properties of -Z, 

The remainder of this paper will be devoted to an analysis of the pancake problem 
under a conjecture that -I, is the worst case (i.e., requires the most flips to sort) 
among all stacks of n burnt pancakes. 

Exhaustive computer search reveals that the conjecture is true for n < 8 (using 
information from the computer search, we shall demonstrate below that the conjec- 
ture also holds for n = 9 and n = 10). Unfortunately, computational tests of the 
conjecture rapidly become intractable beyond this point. 

It is interesting to note that -I, proved to be the one difficult case for the 
algorithm of Section 3. Recall also Corollary 3.1, which stated that if the worst case for 
a particular value of n is unique, then the signed permutation which sorts it must be an 
involution. We have already observed that -l,, which sorts --I,, is indeed an 
involution (for 6 < n < 9, -I, is in fact the unique stack at the maximum distance 
from I,). 

In fairness, we should also point out that for some n, including n = 11,14,15, we 
have found a stack -J, (the same as -I,, except that the topmost pancake is 
rightside up) that requires exactly as many flips to sort as -I,. -J, does not appear 
to be a candidate for a general worst case, however, since for some values of n, 

including n = 6,7,8,9,10,12, -J, is strictly easier to sort than ---I,, whereas no value 
of n has been found for which -J, is strictly more difficult to sort than -I,. 

We now present a number of interesting properties of -I, and - 1,: 

Theorem 4. 1, and - 1, are the only elements of B, that commute with every element of 

B,; i.e., the center of B, is precisely (l,,, -l,,}. 
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Proof. Write g [i] = j or g[ -i] = - j if the signed permutation represented by 

g moves the pancake at position i to position j without flipping it. Write g[i] = -j or 

g[ -i] = j if g flips the pancake at position i and then moves it to position j. 

Consider an arbitrary group element g, and arbitrary indices a and b, 

-n f a, b < n, such that g[a] = b (equivalently, g[ -a] = -b). Note that for 

all indices i, -l,[i] = -i. Thus g[ -l,[a]] = g[ -a] = -b. However, 

- l,[g[u]] = - l,[b] = -b as well. Since g and the indices a, b were arbitrary, the 

result holds for all indices of all elements g E I?,. Then - 1,g = g( - l,), so - 1, 

commutes with all g E B,. 

Now consider any other element h E B,, h # l,, - 1,. Any such h must fall into one 

of the following two categories: 

(1) h[u] = + b, b # a, for some 1 d a, b d n. Then choose an element g such that 

g[u] = a, and g[b] = c, c # b, c 3 1. (Such a g must exist for II >, 3.) Now, 

h[g[u]] = h[u] = +b, but g[h[u]] = g[ +b] = +c # +b. So hg # gh and his 

not in the center of B,. 

(2) h[u] = f a for all 1 < a < n. Then since h # l,, -l,, there must be distinct 

indices a and b such that h [a] = a and h [b] = -b. Choose any group element 

g such that g[u] = b and g[b] = a. Then h[g[a]] = h[b] = -b, but 

g[h[a]] = g[u] = b. So hg # gh and h is not in the center of B,. 

The identity 1, is trivially in the center of B,. Thus - 1, and 1, are the only elements 

in the center of B,. 0 

This result leads immediately to the following theorem. 

Theorem 5. Zf bi, bi, ... bi, = - 1, is a factoring of - 1, into a sequence ofkflips, then 
any cyclic permutation of the$ip sequence, and any cyclic permutation of the reversal of 
the sequence, is also a factoring of - 1,. 

Proof. To cycle the factors, we repeatedly multiply both sides of the equation on the 

left and right by the first flip in the sequence. For example, we can cycle once by: 

biIbi, ... bi, = -1.9 

bilbilbi, ..’ bikbi, = bi,( - l,)bi,) 

biz ... bil,bi, = (- I,)bilbi,) 

bi, ‘1. bi*bi, = - l,, 

where we have made use of the facts that bj( -1,) = (- l,)bj and bj = bj ‘. We could 

cycle again by multiplying on the left and right by bi2) and so on. 

Note that the reversal of any sequence of flips represents the inverse of the sequence. 

Thus bi, ... bi, = - 1,’ = - 1,. But then any cyclic permutation of the reversed 

sequence is also a factoring of - 1, by the argument above. 0 
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Theorem 6. There exists an optimum (shortest) sequence of Jlips fbr sorting -I, that 

begins with the jlip of the entire stack. 

Proof. The flip of the entire stack must occur at least twice in any sequence which 
sorts -I,: once to get the upside-down pancake -n off the bottom, and once to put 
it back rightside up. By the previous theorem, we can cycle any optimum sequence 
until one of these flips appears first. 0 

Let T(n) be the minimum number of flips necessary to sort -1,. Then Theorem 6 
gives us the following corollary. 

Corollary 6.1. Zf -I, can be sorted optimally in T(n) Pips, then 

n 

n-l 
T(n)- 1 

l- 

2 

1 

1 

2 

n-l 

n 

Under the conjecture, g(n) = T(n), so it will suffice to obtain bounds on T(n). The 
theorem below gives a bound on T(n + 1) when T(n) is known. 

Theorem 7. T(n + 1) < T(n) + 2. 

Proof. We first note the more obvious fact that T(n + 1) < T(n) + 3; we can simply 
flip the largest pancake to the top, flip this pancake by itself if necessary, flip the entire 
stack, then sort the remaining n pancakes in T(n) steps. 

To obtain the improved result, let ( r) represent an arbitrary “substack” of pan- 
cakes, and let (I) represent that same substack flipped upside down. Observe that at 
some point in the process of sorting -Z,, the two smallest pancakes 1 and 2 must be 
joined together and never again separated. This can occur only in one of the following 
two ways: 

-1 

(t) ä 

2 

(4 (b) 

(1) 
1 

2 
or 

2 

(t) 

-1 
l- 

t-11- 
-2 

-1 

If case (a) occurs, we sort -I,+ 1 as follows: Treat pancakes 2 and 3 as the single 
pancake 2, and apply the same sequence of flips used to sort -1, up to the point that 
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(a) is about to occur. Then execute this sequence of three flips: 

t 

(1) 
1 

2 

3 

At the end of these three flips, we once again treat 2 and 3 as the single pancake 2. 
The configuration of the stack is exactly the same as after executing the single 
flip in (a), so we continue with the remainder of the sequence for sorting -I,. In 
all only two additional flips have been inserted into the sequence, so T(n + 1) < 

T(n) + 2. 
If case (b) occurs, a similar argument applies except that now we treat pancakes 

1 and 2 as the single pancake 1 up to the point that (b) occurs. Again, the insertion of 
two additional flips suffices. 

It might seem at first that some complication could arise if pancakes 2 and 3 are 
already joined at the time that (a) or (b) occurs. However, a slightly more careful 
analysis shows that even after inserting the two extra flips needed to sort -I,,+ 1, the 
2 and 3 remain joined. 

We assumed the existence of pancakes 1 and 2 in -I,, so we find that for n > 2, 
r(n + 1) < T(n) + 2. 0 

Theorem 8. g(n + 1) < g(n) + 2. 

Proof. By Theorem 1, any stack of n + 1 burnt pancakes other than -I,+ 1 can be 
reduced to a stack of n burnt pancakes in two flips. But by Theorem 7, - I, + 1 requires 
at most two more flips than --I,. Thus all stacks of n + 1 pancakes require at most 
two more flips than some stack of n pancakes. 0 

Corollary 8.1. -Z9 is the unique worst case for n = 9 burnt pancakes; thus 
g(9) = T(9) = 17. 

Proof. T(9) = 17 by computer search. But by Theorem 8, g(9) d g(8) + 2 = 17. Thus 
-Z9 is a worst case for n = 9; now we must show it is unique. Exhaustive computer 

search has shown that -Is is the unique worst case on 8 pancakes, requiring 15 flips. 
But by Theorem 1, any hypothetical stack of 9 burnt pancakes, other than -Z9, 
which requires 17 flips to sort can be reduced within two flips to a stack of 8 pancakes. 
This resulting stack of 8 pancakes must require at least 15 flips to sort, else we could 
have sorted the original stack of 9 pancakes in less than 17 flips. Since there is only one 
stack of 8 pancakes requiring 15 flips, any stack of 9 pancakes, other than - Z9, 
requiring 17 flips must be transformable to -Is in two flips. There are 72 such stacks; 
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computer search shows that all can be sorted in at most 16 flips. Hence -Z9 is the 
unique worst case on 9 burnt pancakes. 0 

We can now use this fact to verify the conjecture 

Corollary 8.2. --II0 is a worst case for n = 10 
T(10) = 18. 

for the case n = 10. 

burnt pancakes; thus g(10) = 

Proof. The same argument used in the proof of Corollary 8.1 applies once again. 
There are 90 stacks of 10 burnt pancakes that can be reduced in two flips to -Z9; 
these are the only stacks which could possibly require 19 flips to sort. Computer 
search shows that all can be sorted within 17 flips. Thus there are no stacks of 10 
pancakes requiring 19 flips to sort, and since -I,,, requires 18 flips, it is a worst 
case. 0 

Corollary 8.3. For n 3 10, g(n) < 2n - 2. 

Proof. Follows immediately from Corollary 8.2 and Theorem 8. Cl 

The next theorem is useful in pruning computer searches for an optimal sequence 
for sorting -I,. 

Theorem 9. Call two con.secutiveJlipsh and f;+ 1 a useless pair if the number of items 
they JEip differs by at most 1. Zf there is a sequence of kfZips ( fi , . . . , fJ for sorting -I,, 
that contains a useless pair, then T(n - 1) < k - 2. 

Proof. The casef; = fi + r is trivial, since thenf; = f ,‘, and we can simply eliminate the 
useless pair of flips. 

Now without loss of generality, let fi flip the top j pancakes and let fi flip the top 
j + 1 pancakes, where we have used Theorem 5 as necessary to reverse the sequence 
and/or cyclef; to the first position. Then we have a sequence of the form: 

-1 

-j 

-(j + 1) 

- (j + 2) 

-n 

t- 

j 

1 

-(j + 1) 

- (j + 2) 

-n 

j+l 

-1 

-j 

- (j + 2) 

-n 

k-2 

t 

1 

j 

j+l 

j+2 

n 

But then we can sort -I,_ 1 by using a variation on the last k - 2 flips of the above 
sequence. Given the stack -In-r, we number the pancakes 1, . . . . j, j + 2, . . . . n, and 



D.S. Cohen, M. Blum / Discrete Applied Mathematics 61 (1995) 105-120 117 

proceed as if a dummy pancake j + 1 is initially atop the stack. Then, keeping track of 
the position of the dummy pancake, we use the final k - 2 flips above. In reality, any 
flip of the top m pancakes which includes the “dummy” actually flips only m - 1 
pancakes. 0 

Suppose that we know T(n) = k. Then by Theorem 7, we know T(n + 1) < k + 2. 
Now Theorem 9 tells us that a computer search for a sequence of k + 1 flips that sorts 
-I IIf1 need not consider any sequence containing a useless pair, since the existence of 

such a sequence would imply 7’(n) < k - 1, a contradiction. 

6. Improved bounds for sorting -I, 

We begin with a lower bound for sorting --I,. Note that since g(n) > T(n), any 
lower bound on T(n) also holds for g(n) regardless of whether or not the conjecture is 
true. 

Theorem 10. r(n), g(n) > 3n/2. 

Proof. The proof was essentially given in [3], wherein a lower bound of 3n/2 - 1 is 
derived on sorting: 

n 

n-l 

1 

Applying Corollary 6.1, we immediately find that T(n) 2 (3n/2 - 1) + 1 = 3n/2. Since 
g(n) 2 T(n), the lower bound also holds for g(n). 0 

To improve the upper bound on T(n), we now present a near-optimal recursive 
algorithm for sorting -I,,. The algorithm works by repeated application of sorting 
sequences for small n. 

Recursive algorithm for sorting -1.. Let t(n) be the number of flips required by the 
recursive algorithm to sort -I,. As the basis for the recursion, suppose that for some 
m, we have an algorithm (not necessarily optimal) for sorting -I, in t(m) flips. We can 
then apply this algorithm recursively to sort -I,, in general by treating the bottom 
n - m + 1 pancakes, numbered m through n, as a single pancake. Without loss of 
generality, the first flip is taken to be of size n, so the entire stack is turned over. 
We now remember momentarily that pancakes m through n are distinct, and make 
use of Corollary 6.1 to recursively sort them in t(n - m + 1) - 1 flips. When this is 
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completed, we once again treat them as a single pancake and execute the remaining 
t(m) - 1 flips to complete the sort of the entire stack. The procedure is illustrated 
below: 

m 

m- 

l 

We obtain the recurrencl e 

1 

t(n-m+l)-1 

i- 

1 

t(n) = t(m) - 1 + t(n - m + 1) 

= t(m) - 1 + t(n - (m - l)), 

which yields 

m 

n t(m)- 1 

l- 

Vi-1 

1 _ 

1 _ 

m-l 

m 

n 

t(n) = W-1 ( > .n. 
m-l 

At most a constant number of flips will be required to sort the last few pancakes when 
the recursion bottoms out. 

A computer search has located the following sequence of 24 flips to sort - Zi5: 
(15,10,4,6,14,6,4,10,15,10,4,6,14,6,4,10,15,10,4, 6,14,6,4,10). The zealous reader 
may wish to check this by hand. (The sequence consists of three repetitions of an 8 flip 
subsequence containing a palindrome of length 7; we will not make use of this 
interesting fact, however.) This gives us a base case for the recursive algorithm with 
m = 15 and t(m) = 24, so we obtain 

23n 
t(n) < 14 + c 

for constant c. Since the lower bound on sorting --I,, is 1.5n, we have shown that 
1.5n < T(n) 6 23n/14 + c x 1.6429n + c. It may be possible to make the upper 
bound tighter by using the results of more ambitious computer searches as the basis of 
the recursion.’ 

The 23n/14 algorithm above is somewhat surprising, since the best known upper 
bound on sorting unburnt pancakes, disregarding additive constants, is 5n/3 > 23n/14. 

r Heydari and Sudborough [4] have recently located a 48 flip sequence for sorting -I,, This improves the 

bound on the algorithm to 47n/30 + c z 1.5667n + c. The flip sequence is (31,z,30,zR), where 

z = (18,12,24,20,26,22,6,12,14,18,24,30,14,12,18,31,26,12,22,16,12, 10,6), and zR is the reversal of z. 

Note that this also strengthens Theorem 11, so that J(n), g(n) < 47n/30 + c under the conjecture. 



D.S. Cohen, M. Blum / Discrete Applied Mathematics 61 (1995) 105-120 119 

Table 1 

f(nh s(n), and j-(n) 

n f(n) s(n) T(n) 

1 0 
2 1 
3 3 
4 4 
5 5 
6 I 
I 8 
8 9 
9 10 

10 11 
11 13 
12 14 
13 ? 
14 ? 
15 ? 
16 ? 
17 ? 
18 ? 

24 > 21 

1 1 
4 4 
6 6 
8 8 

10 10 
12 12 
14 14 
15 15 
17 17 
18 18 
‘? 19 
‘, 21 
? 22 
‘? 23 
? 24 
? 26 
? 28 
? 29 

? ? 

Since any algorithm for sorting burnt pancakes also serves to sort unburnt pancakes, 
the upper bound on sorting unburnt pancakes is also improved under the conjecture 
to 23n/14 + c. 

Theorem 11. Under the conjecture that -1, is the worst case among all stacks of 
n burnt pancakes,f(n),g(n) d 23n/14 + c. 

Note that even if the conjecture is true, the above bound is non-constructive, in 
the sense that our algorithm does not tell us how to sort any configuration other 
than -I,. 

We conclude with Table 1 containing the exact values off(n), g(n), and T(n) for 
some small instances of n, most of which were obtained by computer search. The 
values off(n) for n < 9 appeared previously in [3]. The entry forf(l2) is from [4], and 
T(9) and T(10) were obtained in Corollaries 8.1 and 8.2. The lower bound of 27 on 

f(24) is demonstrated by the stack (topmost pancake on left): [l, 6,3,8,5,2,7,4, 
9,14,11,16,13,10,15,12,17,22,19,24,21,18,23,20], which requires 27 flips to sort. 
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